💬 About Me
官俊涛,硕士生导师,准聘副教授(集成电路研究所-丁瑞雪团队),西安电子科技大学工学博士。研究方向为主要研究方向为智能图像信号处理器AI-ISP、边缘神经网络处理器EdgeNPU,作为主要成员参与国家重点研发计划、国家自然科学基金、装备预研等科研项目。长期从事图像信号处理器设计、图像处理算法开发以及深度学习加速器等领域的研究工作,在面向图像处理的集成电路软-硬件协同设计方面取得了一系列的科研成果,具备算法-电路-架构协同设计以及芯片流片测试的经验。相关成果发表在国际权威杂志IEEE TCSVT、IEEE TNNLS、IEEE TCAS-II、IEEE GRSL、Neurocomputing中,授权国家发明专利11项。并担任IEEE TNNLS、IEEE TCSVT、IEEE GRSL、IEEE Photonics Journal等多个学术期刊的审稿人。
💻 主要研究方向:
- 边缘神经网络处理器EdgeNPU
- 智能图像信号处理器AI-ISP
- 先进图像处理算法
- 微型机器学习TinyML
🎖 招生信息
- 每年3-5名硕士研究生名额.
- 招生专业为电子信息-集成电路工程.
- 欢迎各位同学报考!
🔥 News
- 2023.10: 🎉🎉 恭喜2022级研究生江学堃同学获得国家奖学金National Scholarship.
- 2023.10: 🎉🎉 恭喜2022级研究生郭庆辉同学获得国家奖学金National Scholarship.
- 2023.08: 🎉🎉 恭喜2022级研究生江学堃、郭庆辉、方舒宁同学获得全国大学生集成电路创新创业大赛一等奖.
📝 Publications
- Juntao Guan, Gufeng Liu, Rui Lai*, Fanhong Zeng. “Microarchitecture Aware NAS for TinyML Devices”, 2024 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)
- Huanan Li, Rui Lai*, Shicheng Jia, Juntao Guan. “An Energy-Efficient Look-up Table Framework for Super Resolution on FPGA”, 2024 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)
- Juntao Guan, Rui Lai*, Huanan Li, Yintang Yang, Lin Gu, “DnRCNN: Deep Recurrent Convolutional Neural Network for HSI Destriping”, IEEE Transactions on Neural Networks and Learning Systems, Vol.34, Issue 7, pp.3255-3268, 2023.
- Juntao Guan, Rui Lai*, Yang Lu, Yangang Li, Huanan Li, Lichen Feng, Yintang Yang, Lin Gu. “Memory-Efficient Deformable Convolution based Joint Denoising and Demosaicing for UHD Images”, IEEE Transactions on Circuits and Systems for Video technology, Vol.32, Issue 11, pp.7346-7358, 2022.
- Dong Wang, Rui Lai*, Juntao Guan, “Target Attention Deep Neural Network for Infrared Image Enhancement”, Infrared Physics and Technology, Vol.115, pp.103690, 2021.
- Juntao Guan, Rui Lai*, Ai Xiong, Zesheng Liu, Lin Gu, “Fixed Pattern Noise Reduction for Infrared Images Based on Cascade Residual Attention CNN”, Neurocomputing, Vol.377, pp.301-313, 2020.
- Zesheng Liu, Rui Lai*, Juntao Guan, “Spatial and Transform Domain CNN for SAR Image Despeckling”, IEEE Geoscience and Remote Sensing Letters, Vol.19, pp. 4002005, 2022. (ESI High Cited Paper)
- Juntao Guan, Rui Lai*, Ai Xiong, “Wavelet Deep Neural Network for Stripe Noise Removal”, IEEE ACCESS, Vol.19, pp.44544-44554, 2019.
📚 Academic Research
边缘神经网络处理器
针对超低功耗应用场景,提出了“无外存计算”的感知计算框架,并通过算法优化以充分压缩模型尺寸,通过片内访存实现整个模型的计算,从而彻底消除由片外访存带来的巨大功耗和延迟,提升系统能效。
微型机器学习算法
在硬件资源严格受限的物联网边缘侧微处理器和专用芯片上,EdgeML技术正通过高效的算法和硬件电路设计,以应对传统机器学习惊人计算开销和存储空间需求带来的巨大挑战,实现在边缘侧设备的部署。